jdp's blog



A big problem with predicting responses to global climate change (or other environmental changes) is that they are nonlinear and thus disproportionate. Sometimes large changes can have relatively small responses, while in other cases small changes can have disproportionately large impacts.

Responses to environmental change are sometimes characterized by amplifiers—phenomena that reinforce or exaggerate the effects of the change. For example, if coastal land is subsiding, this amplifies the effects of sea level rise. Or, when warming results in permafrost thawing, this releases methane, a heat-trapping greenhouse gas, this leads to further warming. However, there are also filters—phenomena that resist, offset, or diminish the effects of the change. For instance, if coastal land is tectonically or isostatically uplifting, this can offset or even eliminate effects of sea level rise with respect to coastal submergence. Or, if warming results in increased cloud cover, which reflects more radiation, this counteracts the warming.



I recently stumbled upon the OCBIL theory. In the words of Hopper (2009): “OCBIL theory aims to develop an integrated series of hypotheses explaining the evolution and ecology of, and best conservation practices for, biota on very old, climatically buffered, infertile landscapes (OCBILs). Conventional theory for ecology and evolu- tionary and conservation biology has developed primarily from data on species and communities from young, often disturbed, fertile landscapes (YODFELs), mainly in the Northern Hemisphere.” As a geomorphologist, and in particular a biogeomorphologist interested in coevolution of landscapes, biota, and soils, the OCBIL-YODFEL contrast is extremely interesting—mainly because it implies a key role for landscape age, stability, and geomorphic disturbance regimes in the development of ecosystems and evolution of biodiversity patterns.



One of my major research interests is the coevolution of soils, landforms, and biota. I’ve been working in this area pretty steadily since about 2000, but until 2013 I was completely unaware of some work being done along the same lines, over about the same time period. This is the work of W.H. Verboom and J.S. Pate from Western Australia, who among other things developed the “phytotarium concept.” Phytotarium defines the specific plants and microbial associates driving specific pedological changes during niche construction. This concept, and a wealth of work on biogenic origins of pedological and geomorphological features such as clay pavements, texture-contrast (duplex, as they call them in Australia) soils, and laterites, was highly relevant to my own thinking (e.g., Phillips, 2009a; 2009b), but though I consider myself familiar with the biogeomorphology and pedogenesis literature, then and now, I had somehow missed it.

Deep sandy duplex (vertical texture contrast) soils, Western Australia. Photo credit: Dept. of Agriculture & Food, Western Australia.

Sycamores and Hillslopes

Below are some recent photographs of sycamore trees (Platanus occidentalis) in limestone bedrock at Herrington Lake, Kentucky (about37.78o N, 84.71o W). As you can see, the tree roots and trunks exploit joints in the rock, and accelerate weathering both by physically displacing limestone slabs and widening joints by root growth, and by facilitating biochemical weathering along both live and dead roots.

Sycamores rock

These are some nice examples of root/bedrock interaction, and the general phenomena are not uncommon, though usually much more difficult to see. The Herrington Lake shores also appear to illustrate a process by which the sycamores accelerate weathering and mass movements (other trees are also involved, but Platanus occidentalis seems to be the most common and effective):

1. Plants colonize the exposed bedrock, with roots exploiting bedrock joints.

2. Tree roots accelerate weathering and loosen joint blocks.

3. While the tree is still alive, root growth envelopes rock fragments and the trees provide a physical barrier to downslope transport.

Antarctic ice, sea-level, & rivers


The long-speculated collapse of the west Antarctic ice sheet is underway, and also appears to be on an unstoppable trajectory. According to the recently-published research documenting this (Joughin et al., 2014; McMillan et al., 2014; Rignot et al., 2014) it will likely take a couple of centuries for the ice sheets to transfer their water to the sea (in the case of land ice). Among other things, this means that already rising sea levels will accelerate (see this NASA summary discussion on past meltwater pulses and their effects on sea level: http://www.giss.nasa.gov/research/briefs/gornitz_09/)



Earth surface systems are characterized by components that are adjusted, and those that aren't. By "adjusted," I mean that they have had time to respond to the most recent change or disturbance, and reach relaxation time equilibrium (Phillips, 2009), are considered to be characteristic of their environment. Non-adjusted components are inherited from past environmental conditions, or are inherently dynamically unstable, nonequilibrium phenomena that basically don't reach a stable condition. You could also add a third category--phenomena that are in the process of adjustment, but haven't have time to complete the process (this corresponds roughly to Renwick's (1992) triad of equilibrium, nonequilibrium, and disequilibrium geomorphic systems). 

The attached describes a simple method for measuring and quantifying the degree of adjustedness in environmental systems--at least the quantification is simple; determining what constitutes adjusted, adjusting, and non-adjusted could get hairy. This was the seed of what was to be a research proposal, but I doubt that I will ever have time to pursue it. Maybe you will!



Science fiction and popular science writer Arthur C. Clarke once wrote that "any sufficiently advanced technology is indistinguishable from magic." Riffing on that theme, I once gave a talk in which I proclaimed that "any sufficiently improbable event is distinguishable from the miraculous." Some definitions of "miracle" invoke the divine or supernatural, but I have in mind the definition (in this case from the Merriam-Webster dictionary) as: "an extremely outstanding or unusual event, thing, or accomplishment." The point of the argument is that, due to the inescapable, irreducible role of geographical and historical contingency in Earth surface systems, all such systems (landscapes, ecosystems, soils, etc.) are unique in some respects (a formal argument along these lines is presented in this article: Phillips, J.D.  2007.  The perfect landscape.  Geomorphology 84: 159-169.). Thus the probability of existence of any given state of any given system at a given point in time is infinitesimally low. This exceedingly low probability makes nearly any environment in some senses extremely outstanding and unusual, and thus a miracle.


Subscribe to RSS - jdp's blog