Skip to main content

Biology department seminar

The Promise and Practice of Inclusive Education

Education holds the promise of preparing students to be engaged, thriving participants in a socially just democracy. For that ideal to occur, the structure and experience of the classroom must reflect both its constituents and consider the socially just imaginaries in which we would all like to inhabit. Using examples from the civil rights era's interrogation of our society, we will explore how an introductory biology course can help fulfill higher

 

https://www.as.uky.edu/Dewsbury%20Seminar%20F23

Date:
Location:
THM 116

Thomas Hunt Morgan Annual Lecture 2023: "African Integrative Genomics: Implications for Health and Disease"

Selfie Dr. Sarah Tishkoff | Tishkoff Lab

 

Sarah Tishkoff is the David and Lyn Silfen University Professor in Genetics and Biology at the University of Pennsylvania, holding appointments in the School of Medicine and the School of Arts and Sciences. She is also Director of the Penn Center for Global Genomics and Health Equity.

Dr. Tishkoff studies genomic and phenotypic variation in ethnically diverse Africans. Her research combines field work, laboratory research, and computational methods to examine African population history and how genetic variation can affect a wide range of traits – for example, why humans have different susceptibility to disease, how they metabolize drugs, and how they adapt through evolution.

Dr. Tishkoff is a member of the National Academy of Sciences and a recipient of an NIH Pioneer Award, a David and Lucile Packard Career Award, a Burroughs/Wellcome Fund Career Award, an ASHG Curt Stern award, and a Penn Integrates Knowledge (PIK) endowed chair. She is a member of the Scientific Advisory Panel for the Packard Fellowships for Science and Engineering and the Board of Global Health at the National Academy of Sciences and is on the editorial boards at PLOS GeneticsGenome Research; G3 (Genes, Genomes, and Genetics);Cell.

Her research is supported by grants from the National Institutes of Health, the National Science Foundation, the Chan Zuckerberg Institute, and the American Diabetes Association.

Invite

Date:
Location:
THM 116
"The Promise and Practice of Inclusive Education" knmorg2 Tue, 11/15/2022 - 02:42 pm

SelfieDr. Bryan Dewsbury | Dewsbury Lab

Bio:
Bryan Dewsbury is an Associate Professor of Biology at Florida International University where he also is an Associate Director of the STEM Transformation Institute. He received is Bachelors degree in Biology from Morehouse College in Atlanta, GA, and his Masters and PhD in Biology from Florida International University in Miami, FL. He is the Principal Investigator of the Science Education And Society (SEAS) program, where his team conducts research on the social context of education. He is a Fellow of the John N. Gardner Institute and a Director at RIOS (Racially-Just Inclusive Open Science) institute. He conducts faculty development and support for institutions interested in transforming their educational practices pertaining to creating inclusive environments and, in this regard, has worked with over 100 institutions across North America, United Kingdom and West Africa. He is a co-author of the book 'Norton's Guide to Equity-Minded Teaching', available for free as an E-book. He is the founder of the National Science Foundation (NSF) funded Deep Teaching Residency, a national workshop aimed at supporting faculty in transforming their classroom to more meaningfully incorporate inclusive practices. He is the creator of the MOOC called 'Inclusive Teaching' sponsored by HHMI Biointeractive which will be released on August 15th. Bryan is originally from the Republic of Trinidad and Tobago and proudly still calls the twin island republic home.

Abstract:
Education holds the promise of preparing students to be engaged, thriving participants in a socially just democracy. For that ideal to occur, the structure and experience of the classroom must reflect both its constituents and consider the socially just imaginaries in which we would all like to inhabit. Using examples from the civil rights era's interrogation of our society, we will explore how an introductory biology course can help fulfill higher
education's civic mission.

Check out his book here!

Check out his HHMI/Inclusive Teaching trailer here!

Watch the seminar here!

Date:
Location:
THM 116
“Behavioral Syndromes: Evolutionary Constraints and Adaptive Explanations” knmorg2 Tue, 11/15/2022 - 02:36 pm

SelfieNed Dochtermann | Dochtermann Lab

Abstract:
While behavioral syndromes are frequently argued to represent an optimal outcome of correlated selection, they also have the potential to constrain evolutionary responses. Via intraspecific and interspecific comparisons we attempted to determine whether behavioral variation was distributed in a manner consistent with either (or both) of these explanations. We compared the distribution of genetic variation across four populations of field crickets (Gryllus integer) and for seven behavioral measures. The distribution and orientation of genetic variation was conserved across populations and divergence among populations was constrained to a shared direction in multivariate space. We then compared the distribution of behavioral variation across five species of crickets and identified a strong phylogenetic signal. Combined, these intra- and interspecific comparisons are consistent with behavioral syndromes acting as constraints on evolutionary outcomes. Finally, in a natural population of deer mice (Peromyscus maniculatus) we compared the orientation of behavioral variation with the direction of selection acting on the population. We found that the distribution of behavioral variation was inconsistent with our a priori predictions. These three independent results suggest that intuitive adaptive explanations may be insufficient to explain the ubiquity of behavioral syndromes.

Check out the seminar here!

PmacCricket

Date:
Location:
THM 116
"Calculating Collapse and Stability of Food Webs Based on Consumption Constraints, Body Size, and Changing Temperature" knmorg2 Tue, 11/15/2022 - 02:34 pm

SelfieDr. Van Savage

Bio:
I am a Professor in the Ecology and Evolutionary Biology and Biomathematics departments. A major goal of my research is to quantify and understand the possible functions, forms, and interactions of biological systems that result in the extraordinary diversity in nature. I have studied a wide range of areas such as metabolic scaling, consumer-resource interactions, rates of evolution, effects of global warming on ecosystems, tumor growth, and sleep. Complementary to this, I aim to understand how much variation around optima or averages is considered healthy or adaptive versus diseased or disturbed states, which are essentially deviations from normal or sustainable functioning. As I attempt to make progress on these questions, I join together ecology, evolutionary theory, physiology, mathematical modeling, image-analysis software, informatics, and biomedical sciences. Many theories, including some of my work, focus on optimal or average properties, but more recently, I have been working to obtain the large amounts of data necessary to characterize variation in key properties. My new findings about the diversity and variation in form and function are revealing flaws in current models, and I am working to develop new theories that incorporate realistic amounts of natural variation.

Abstract:
The question of which factors contribute to ecosystem and food webs stability is one of the most fundamental and foundational in all of ecology. Here I present findings from a new numerical model that allows us to include or exclude different potential factors, and I interpret these results using a novel method that examines how stability and connectance change with consumer-resource size ratios. In this way we are able to compare our predictions and model with empirically grounded data and known trends. Consequently, we are also able to study how variation in size distributions within food webs overall impact the stability of food webs. These results are followed by a more analytical mathematical treatment of how eigenvalue distributions—directly related to system stability—change depending on the structure of the interaction matrix. As part of this, I review and revisit seminal work by Robert May and Stefano Allesina, and connect with and synthesize some lesser known theorems from linear algebra to illuminate and understand some of the results from our numerical model. Finally, I talk about how this work might be extended to consider the impacts of increasing or fluctuating temperatures due to climate change, and possible directions for enlarging and extending the
mathematical concept of stability to something closer to its ecological meaning.

Date:
Location:
THM 116

"From the Pleistocene to the Anthropocene: Biodiversity in Changing Environments"

SelfieDr. Jessica Blois | Blois Lab

BIO:
Dr. Jessica Blois is an Associate Professor in the Department of Life and Environmental Sciences at UC Merced. Her research is particularly focused on examining the relative roles of environmental versus biotic drivers of biodiversity change, in merging data from different kinds of fossil proxies such as mammal bones and plant macrofossils, and in applying perspectives from the past to help conserve biodiversity. Her work combines field work aimed at broadening our samples of fossil and modern mammals, phylogeographic analyses to understand how genetic diversity is structured spatiotemporally, and paleobiogeographic modeling. Dr. Blois’ primary study system is North American mammals from the past 21,000 years, and she also has a strong focus on developing the paleo-informatic infrastructure to enable large-scale science.

Abstract:
Climates today are changing substantially and will continue to do so over the next hundred years and beyond. All of the different elements that comprise Earth’s biosphere—its biodiversity—depend on and respond to Earth’s climate in a variety of ways, and in turn, Earth’s biodiversity modulates the magnitude and trajectory of climate change. Species responses to highly novel climatic (and other anthropogenically-forced) conditions—which may fall outside the range of conditions experienced by species over their histories—will impact the adaptive capacity and evolutionary potential of species and shape future patterns of biodiversity. In this talk, I will present several recent projects illustrating how climate impacts biodiversity. I will focus on ecological processes that structure local populations and communities, and then move towards how we can scale up towards a broader understanding of how ecological processes structure biodiversity patterns across space and time.

Watch the seminar here!

Date:
Location:
THM 116

"Craniodental Covariation and the Evolution of Human Pregnancy"

SelfieDr. Tesla Monson | Monson Lab

BIO:
Dr. Tesla Monson is an Assistant Professor of Anthropology at Western Washington University where she runs the Primate Evolution Lab. Her lab’s research focuses on the evolution of skeletal variation, life history, and reproduction in extant and fossil mammals. Dr. Monson recently published the first methods for reconstructing prenatal growth rates in the fossil record, one of which relies exclusively on teeth. Dr. Monson earned her PhD in Integrative Biology at UC Berkeley (2017), which is where she first became interested in science communication and research. Since then, she has developed and hosted a series of sci-comm projects, ranging from a science talk radio program called The Graduates, to a Twitter series highlighting the influence of women in early Washington State history (Washington Women).

Abstract:
The vertebrate fossil record is comprised almost entirely of the remains of bones and teeth. It is thus a key goal for evolutionary biologists to extract as much information as possible from these anatomical remains through morphological investigation. My research has demonstrated that there are significant phenotypic correlations between many anatomical traits, as well as between craniodental morphology and life history. These correlations both constrain and enable evolution, leading to the morphological diversity and disparity that we see today. In this talk, I will discuss our new research using cranial and dental morphology to reconstruct prenatal growth rates in

the hominid fossil record. Prenatal growth, or how quickly a fetus grows in utero, varies widely across primate species with the highest rate in humans. We recently demonstrated that prenatal growth rates increased throughout the Pleistocene, reaching ‘human-like’ rates just under 1 million years ago, before the evolution of our species. Prenatal growth is also key to healthy pregnancy and delivery. I will end by presenting some of our ongoing and future research investigating prenatal growth, and the evolution of encephalization and body size in primates.

"Fossil teeth reveal how brains developed in utero over millions of years of human evolution-new research"

Watch the seminar here!

Date:
Location:
THM 116

"Cold-blooded and Nowhere to Go: How Insects Survive the Winter"

Nicholas Teets

Insect species distributions are tightly linked to winter conditions. Surviving winter requires adaptations to cope with low temperatures and limited food resources, and much of our lab’s work focuses on the underlying mechanisms used by insects to survive extreme winter conditions. In this talk, I will primarily discuss our recent work on survival mechanisms of the Antarctic midge, which is the world’s southernmost insect and the only species endemic to Antarctica. This species can survive freezing of its body fluids for up to nine months a year, but it must also cope with considerable spatial and temporal variability in Antarctica’s unpredictable environments. Here, I will summarize how this impressive beast survives internal freezing, as well as the consequences of microhabitat variability and winter climate warming.

 

Larvae (left) and adults (right) of the Antarctic midge

 

 

Fieldwork

 

  

Date:
Location:
THM 116
Subscribe to Biology department seminar