Skip to main content

Combining Plasmonic Particles And Lipids For Biosensing And Spectroscopy

This presentation will highlight two platforms recently developed in the Sagle group which combine lipids and plasmonic nanoparticles.  The first platform involves sandwiching a liposome between a planar gold surface and a gold colloid to generate a biocompatible, highly enhancing surface enhanced Raman spectroscopy (SERS) substrate.  Our initial characterization of these novel substrates investigates substrate stability, temperature inside the liposome component, SERS activity inside the liposome, SERS mechanism and reproducibility.  The substrates are shown to be stable to laser irradiation and exhibit a temperature increase of only 20 degrees Celsius inside the liposome component.  The SERS enhancement of dye residing in the liposome component was found to be 8 x 106, higher than expected considering the dye molecules are at least 4 nm from either gold surface.  Finite Difference Time Domain (FDTD) calculations reveal that the field enhancements inside the liposome are uniform with the major contributing factor being long range coupling between the gold nanoparticle and the mirror.  Lastly, these substrates show greater reproducibility than typical SERS substrates in which dye is sandwiched between two metallic surfaces, and are expected to allow for the non-perturbative measurement of biological molecules in their native state, freely diffusing in solution.  The second platform involves interfacing a gold nanodisc array with solid supported lipid bilayers for label-free biosensing of membrane-associated proteins.  This platform is shown to have superior sensitivity due to elongated gold nanodics (exhibiting greater sensitivity than typical nanoparticle arrays) and an ultrathin silica layer above the nanodiscs, enabling the lipid bilayer to reside close to the nanoparticle surface.  Further studies currently underway are using this platform with silver nanodiscs to carry out label-free SERS measurements of lipid components in the freely diffusing bilayer.

 

Date:
-
Location:
CP-114

Photonmanagement in NIR and SSM Dye-Sensitized Solar Cells

Abstract: Recently, dye-sensitized solar cells (DSCs) were shown to be the highest power conversion efficiency technology of any solar cell technology when using photons from the beginning of the solar spectrum until 700 nm. Two key directions are apparent in further elevating this technology: (1) broadening the spectral window used, and (2) efficiently subdividing the spectrum further for multijunction devices which can be used in combination with many solar cell technologies. Progress toward designing optimal panchromatic organic sensitizers to use NIR photons based on physical organic concepts such as proaromaticity and cross conjugation will be discussed. Additionally, the design and realization of a series sequential multijunction dye sensitized solar cell (SSM-DSC) system for effective photon management will be discussed. Ongoing research to optimize this system based on transition metal redox shuttle design and high voltage organic dye design will be analyzed. The SSM-DSC system coupled with electrocatalysts as solar-to-fuel systems has been shown to power water splitting and CO2 reduction coupled with water oxidation from a single illuminated area without external bias.

Jared Delcamp

Assistant Professor 

University of Mississippi

Department of Chemistry & Biochemistry

Date:
-
Location:
CP-114

Magic of Handcrafting Musical Instruments Still Thrives in Appalachia

By Gail Hairston

The sweet strains of traditional mountain music still drift on the summer breezes of the Appalachians, reflecting off the hills and flowing through the valleys. 

But before Appalachian mountain music was first preserved on wax discs — as the arid winds of the Dust Bowl blew and the soup lines of the Great Depression grew — the musicians played on handmade fiddles, dulcimers, zithers and mandolins, and heard with the hearts of generations.

Subscribe to