Skip to main content

ecology

PHYTOTARIA, SOILS, & LANDFORMS

 

One of my major research interests is the coevolution of soils, landforms, and biota. I’ve been working in this area pretty steadily since about 2000, but until 2013 I was completely unaware of some work being done along the same lines, over about the same time period. This is the work of W.H. Verboom and J.S. Pate from Western Australia, who among other things developed the “phytotarium concept.” Phytotarium defines the specific plants and microbial associates driving specific pedological changes during niche construction. This concept, and a wealth of work on biogenic origins of pedological and geomorphological features such as clay pavements, texture-contrast (duplex, as they call them in Australia) soils, and laterites, was highly relevant to my own thinking (e.g., Phillips, 2009a; 2009b), but though I consider myself familiar with the biogeomorphology and pedogenesis literature, then and now, I had somehow missed it.

Deep sandy duplex (vertical texture contrast) soils, Western Australia. Photo credit: Dept. of Agriculture & Food, Western Australia.

Sycamores and Hillslopes

Below are some recent photographs of sycamore trees (Platanus occidentalis) in limestone bedrock at Herrington Lake, Kentucky (about37.78o N, 84.71o W). As you can see, the tree roots and trunks exploit joints in the rock, and accelerate weathering both by physically displacing limestone slabs and widening joints by root growth, and by facilitating biochemical weathering along both live and dead roots.

Sycamores rock

These are some nice examples of root/bedrock interaction, and the general phenomena are not uncommon, though usually much more difficult to see. The Herrington Lake shores also appear to illustrate a process by which the sycamores accelerate weathering and mass movements (other trees are also involved, but Platanus occidentalis seems to be the most common and effective):

1. Plants colonize the exposed bedrock, with roots exploiting bedrock joints.

2. Tree roots accelerate weathering and loosen joint blocks.

3. While the tree is still alive, root growth envelopes rock fragments and the trees provide a physical barrier to downslope transport.

4. When the tree dies, the rock fragments are released downslope.

Two A&S Faculty Team Up for New Book on Kentucky's Robinson Forest

English professor Erik Reece and Biology professor James Krupa recently released a book that brings to life the history and ecology of one of Kentucky's most important natural landscapes —the Robinson Forest in eastern Kentucky. "The Embattled Wilderness" depicts the fourteen thousand acres of diverse forest region-- a haven of biological richness-- as endangered by the ever-expanding desert created by mountaintop removal mining.

Suburban Ecology and Invasive Species Research Experience at UK

Through a National Science Foundation program called Research Experiences for Undergraduates, 10 students from colleges across the country spent 10 weeks studying suburban ecology and invasive species at or nearby UK's Ecological Research Facility.

This video appears courtesy of Reveal: University of Kentucky Research Media research.uky.edu/reveal/index.shtml

 

 

Subscribe to ecology