Skip to main content

Lean Operations Management I

This course will revolve around the development of a Single-Product (also called Single-Purpose) production system. It covers topics in basic lean system operations of as well as the management system to support the attainment of highest customer satisfaction with respect to Safety, Quality, Cost, Productivity, Delivery and Human Resource Development. Working in teams, students apply fundamental lean tools and concepts to develop a lean operations environment capable of driving continuous improvement in a simulated factory.

Gas Dynamics

Consideration of the mass, energy and force balances applied to compressible fluids. Isentropic flow, diabatic flow, flow with friction, wave phenomena and one-dimensional gas dynamics. Applications to duct flows and to jet and rocket propulsion engines.

Fluid Dynamics I

Stress at a point (introduced as a tensor of rank two). Equation of conservation of mass, rate of strain tensor, derivation of Navier-Stokes equation, source-sink flows, motion due to a doublet, vortex flow, two- and three-dimensional irrotational flow due to a moving cylinder with circulation, two-dimensional airfoils.

Tops In Me: Aerospace Structures

A detailed investigation of a topic of current significance in mechanical engineering such as: computer-aided manufacturing, special topics in robotics, and current topics in heat transfer. May be repeated under different subtitles to a maximum of nine credits. A particular topic may be offered at most twice under the ME 599 number.

Subscribe to