Skip to main content

Design For Manufacturing

This course will provide a strong foundation in the concepts, theories and applications of design engineering methodologies for effective manufacture of high quality products at low costs and high productivity. In addition to the lectures, the assembly and design analysis of "product based assembly kits" will be used to apply and help learn the tools presented in class. The final project includes the application of these tools to re-design a given product from a manufacturing and assembly perspective.

Design For Manufacturing

This course will provide a strong foundation in the concepts, theories and applications of design engineering methodologies for effective manufacture of high quality products at low costs and high productivity. In addition to the lectures, the assembly and design analysis of "product based assembly kits" will be used to apply and help learn the tools presented in class. The final project includes the application of these tools to re-design a given product from a manufacturing and assembly perspective.

Manufacturing Systems

This course introduces students to fundamentals of design, planning and control of manufacturing systems aided by computers. Concepts of control hardware, NC programming languages, software aspects related to NC manufacturing, programmable controllers, performance modeling of automated manufacturing systems, group technology and flexible manufacturing systems, etc. will be adressed.

Systems Engineering

Systems Engineering is a discipline necessary for cost-effective development of complex multi-disciplinary systems. Optimal design of modern systems for defense, transportation, telecommunications and energy, among other industries, requires a different perspective than the design of subsystems operating within them. This course presents principles and the practice of Systems Engineering, along with its origins in the aerospace and software industries, historical perspective and case studies of current interest.

Gas Dynamics

Consideration of the mass, energy and force balances applied to compressible fluids. Isentropic flow, diabatic flow, flow with friction, wave phenomena and one-dimensional gas dynamics. Applications to duct flows and to jet and rocket propulsion engines.

Process Monitoring And Machine Learning

This course will include two major parts: machine learning theories and applications. Machine learning theories will cover legacy techniques (e.g., support vector machine, Bayesian inference) and then go deeper into deep learning (convolutional and recurrent neural network). The application part will cover some practical studies on how can we leverage the machine learning techniques to analyze the data collected from factory floors. Also, programming of the machine learning techniques (e.g., Python) will be covered in the class as well.

Process Monitoring And Machine Learning

This course will include two major parts: machine learning theories and applications. Machine learning theories will cover legacy techniques (e.g., support vector machine, Bayesian inference) and then go deeper into deep learning (convolutional and recurrent neural network). The application part will cover some practical studies on how can we leverage the machine learning techniques to analyze the data collected from factory floors. Also, programming of the machine learning techniques (e.g., Python) will be covered in the class as well.

Subscribe to