chemistry

Naff Symposium 2014: Todd Yeates, "Giant Protein Cages and Assemblies in Nature and by Design"

40th Annual Naff Symposium chem.as.uky.edu/naff-symposium University of Kentucky College of Arts & Sciences

Dr. Todd Yeates, Department of Chemistry and Biochemistry at UCLA

Abstract: Nature has evolved myriad sophisticated structures based on the assembly of protein subunits. Many types of natural protein assemblies (such as virus capsids) have been studied extensively, while a number of equally sophisticated natural protein assemblies are only beginning to be appreciated. Among the latter group is a broad class of giant, capsid-like assemblies referred to as bacterial microcompartments. They serve as primitive metabolic organelles in many bacteria by encapsulating sequentially acting enzymes within a selectively permeable protein shell. Our laboratory has elucidated key mechanisms of these protein-based bacterial organelles through structural studies. On the engineering side, sophisticated natural protein assemblies like these have for many years represented an ultimate goal in protein design. By exploiting principles of symmetry that are shared by nearly all natural self-assembling structures, we have developed methods for engineering novel proteins that assemble to form a variety of complex, symmetric architectures. Recent successful designs include hollow protein cages composed of 12 or 24 identical subunits in cubic arrangements. Symmetric materials that extend by growth in two or three dimensions are also possible. Natural and engineered protein assemblies will be discussed, along with their future prospects for synthetic biology and biomedical applications.

Naff Symposium 2014: Donald E. Ingber, "From Cellular Mechanotransduction to Biologically Inspired Engineering"

 

 

40th Annual Naff Symposium chem.as.uky.edu/naff-symposium University of Kentucky College of Arts & Sciences

Dr. Donald E. Ingber Director, Wyss Institute for Biologically Inspired Engineering at Harvard University

Abstract: The newly emerging field of Biologically Inspired Engineering centers on understanding the fundamental principles that Nature uses to build and control living systems, and on applying this knowledge to engineer biologically inspired materials and devices for medicine, industry and the environment. A central challenge in this field is to understand of how living cells and tissues are constructed so that they exhibit their incredible organic properties, including their ability to change shape, move, grow, and self-heal. These are properties we strive to mimic, but we cannot yet build manmade devices that exhibit or selectively control these behaviors. To accomplish this, we must uncover the underlying design principles that govern how cells and tissues form and function as hierarchical assemblies of nanometer scale components. In this lecture, I will review work that has begun to reveal these design principles that guide self-assembly of living 3D structures with great robustness, mechanical strength and biochemical efficiency, even though they are composed of many thousands of flexible molecular scale components. Key to this process is that the molecular frameworks of our cells, tissues and organs are stabilized using a tension-dependent architectural system, known as ‘tensegrity’, and these tensed molecular scaffolds combine mechanical load-bearing functions with solid-phase biochemical processing activities. I will describe how this structural perspective has led to new insights into the molecular basis of cellular mechanotransduction – the process by which living cells sense mechanical forces and convert them into changes in intracellular biochemistry, gene expression and thereby influence cell fate decisions during tissue and organ development. In addition, I will present how these scientific advances have been facilitated by development of new micro- and nano-technologies, including engineering of novel human organ-on-a-chip microdevices that also have great potential value as replacements for animal testing in drug development and discovery research. Understanding of these design principles that govern biological organization, and how scientific discovery and technology development can be facilitated by equally melding fundamental science and applied engineering, are critical for anyone who wants to fully harness the power of biology.

 

 

Naff Symposium 2014: Hao Yan, "Designer Architectures for Programmable Self-Assembly"

40th Annual Naff Symposium chem.as.uky.edu/naff-symposium University of Kentucky College of Arts & Sciences

Dr. Hao Yan, Department of Chemistry and Biochemistry & The Biodesign Institute, Arizona State University

Abstract: The central task of nanotechnology is to control motions and organize matter with nanometer precision. To achieve this, scientists have investigated a large variety of materials including inorganic materials, organic molecules, and biological polymers as well as different methods that can be sorted into so-called “bottom-up” and “top-down” approaches. Among all of the remarkable achievements made, the success of DNA self-assembly in building programmable nanopatterns has attracted broad attention. In this talk I will present our efforts in using DNA as an information-coding polymer to program and construct DNA nano-architectures with complex geometrical features. Use of designer DNA architectures as molecular sensor, actuator and scaffolds will also be discussed.

Learning a Hard Science: The Chemistry Learning Center with Lisa Blue

Introductory Chemistry can be a challenge, but Lisa Blue, a professor within the Department of Chemistryeases students' transition to college chemistry with the Chemistry Learning Center. It will serve students of General and Organic Chemistry: answer their questions, provide tutoring, and help students become more confident in their understanding of chemistry.

Visit their website to find information about the General and Organic Chemistry Learning Centers. 

This podcast was produced by Casey Hibbard

Creative Commons License
http://www.as.uky.edu/podcasts/learning-hard-science-chemistry-learning-... by College of Arts and Sciences is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Based on a work at http://www.as.uky.edu/podcasts/learning-hard-science-chemistry-learning-center-lisa-blue.

Two UK Students Awarded Undergraduate Research Abroad Scholarships

Two UK Juniors receive Undergraduate Research Abroad Scholarship, to travel to Switzerland and Brazil.

Naff Symposium Brings Renowned Chemistry Experts to UK

The University of Kentucky's annual Naff Symposium will host three leading chemistry experts on Friday, April 25, at UK's William T. Young Library auditorium.

UK's Chris Richards Awarded Human Frontier Science Program Research Grant

Chris Richards, assistant professor in the Department of Chemistry, received a Human Frontier Science Program research grant for a project focused on understanding complex biological processes.

Mercury Rising: David Atwood

Chemistry professor David Atwood's compound and patents have far-reaching benefits.

Doubling Up

The University of Kentucky Chemistry department is excited to welcome two new faculty members, Professors Kenneth Graham and Peter Kekenes-Huskey, to the Bluegrass this summer.

Pages

Subscribe to RSS - chemistry
X
Enter your linkblue username.
Enter your linkblue password.
Secure Login

This login is SSL protected

Loading