Prereq: Engineering Standing or consent of instructor.
A multidisciplinary approach combining engineering principles for systems analysis and control, knowledge of biological control mechanisms, and computational properties of biological neural networks in the development of engineering neural networks for control applications. Topics include: equivalent circuit models for biological neurons and networks, non-linear differential equation representations, biological control strategies for rhythmic movements, design and development of controller for robot function, proposal development and presentation.
A multidisciplinary approach combining engineering principles for systems analysis and control, knowledge of biological control mechanisms, and computational properties of biological neural networks in the development of engineering neural networks for control applications. Topics include: equivalent circuit models for biological neurons and networks, non-linear differential equation representations, biological control strategies for rhythmic movements, design and development of controller for robot function, proposal development and presentation.