Skip to main content

Ribble Endowment Seminar

"An Active Role for Vision Prior to Eye-opening in Neonates"

Photo of Dr. D'Souza smiling in a white lab coat. In the background you can see blurred green leaves from a tree in the back right corner and the side of a building in the back left corner.Dr. Shane D'Souza

Bio:
Dr. Shane Peter D’Souza is a neuroscientist and vision researcher whose work spans developmental neurobiology, sensory physiology, and circadian biology. He earned his BS in Biology at the University of Kentucky and PhD in Molecular and Developmental Biology from the University of Cincinnati/Cincinnati Children’s Hospital Medical Center, where he investigated how early light exposure shapes neural circuit development in the retina and brain. Now a Postdoctoral Research Fellow in Pediatric Ophthalmology at Cincinnati Children’s, Dr. D’Souza’s research integrates molecular, anatomical, physiological, and computational approaches to understand how intrinsically photosensitive retinal ganglion cells (ipRGCs) and other non-visual photoreceptors influence sensory-driven circuit refinement, photoreceptor abundance, and cross-modal communication in early life. His publication record includes discoveries on melanopsin-dependent regulation of rod photoreceptors, neuropsin and encephalopsin function in visual and non-visual systems, and the role of light-sensitive hypothalamic neurons in thermoregulation and metabolism. By combining high-resolution imaging, transcriptomics, biophysical modeling, and machine-learning, his work aims to uncover fundamental principles of sensory-mediated neural development and sensory adaptation across species. In his spare time, he enjoys studying the evolution of storm systems and serves as a storm spotter for NWS Wilmington, OH. In his spare-spare time, he writes and produces music from his living room.

Abstract:
Most mammals are born with immature, poorly developed sensory systems. As these systems come online, they use immature sensory experience to shape synapses, cell types, and their connectivity across the brain. In the visual system, this experience is thought to be passive, supporting and setting up later modes of image-forming vision after eye-opening.  However, little is known about the form and function of visual experience during the earliest period in a neonate’s life. Driven by this, we set out to generate a comprehensive map of visual system activity and neonatal behaviors in mice.  Using a host of machine learning-based approaches we developed an atlas perinatal visual system activity from the retina to several regions of the brain. Using a combination of chromatic stimuli and genetic loss-of-function mice, we identified the M1 intrinsically photosensitive retinal ganglion cell (ipRGC) in the retina as the driver of early visual system activity, activating distinct brain regions during development. Using this atlas as a guide to assess behaviors, we find that this visual input drives the production of ultrasonic vocalization in neonates and “blinding” mice leads to an augmented vocal code.  Together, these data suggest that early visual system activity has an active role in supporting the development of neonatal behaviors and warrants a deeper exploration of early sensory activity across the developing brain.

A photo of Dr. D'Souza in a white lab coat crouched in some grass holding a doggie toy. Across from Dr. D'Souza is a Golden Retriever with a harness on and it's tongue hanging out of its mouth.Pictured is a color enhanced mouse brain.

 

Date:
Location:
THM 116

"An Active Role for Vision Prior to Eye-opening in Neonates"

Photo of Dr. D'Souza smiling in a white lab coat. In the background you can see blurred green leaves from a tree in the back right corner and the side of a building in the back left corner.Dr. Shane D'Souza

Bio:
Dr. Shane Peter D’Souza is a neuroscientist and vision researcher whose work spans developmental neurobiology, sensory physiology, and circadian biology. He earned his BS in Biology at the University of Kentucky and PhD in Molecular and Developmental Biology from the University of Cincinnati/Cincinnati Children’s Hospital Medical Center, where he investigated how early light exposure shapes neural circuit development in the retina and brain. Now a Postdoctoral Research Fellow in Pediatric Ophthalmology at Cincinnati Children’s, Dr. D’Souza’s research integrates molecular, anatomical, physiological, and computational approaches to understand how intrinsically photosensitive retinal ganglion cells (ipRGCs) and other non-visual photoreceptors influence sensory-driven circuit refinement, photoreceptor abundance, and cross-modal communication in early life. His publication record includes discoveries on melanopsin-dependent regulation of rod photoreceptors, neuropsin and encephalopsin function in visual and non-visual systems, and the role of light-sensitive hypothalamic neurons in thermoregulation and metabolism. By combining high-resolution imaging, transcriptomics, biophysical modeling, and machine-learning, his work aims to uncover fundamental principles of sensory-mediated neural development and sensory adaptation across species. In his spare time, he enjoys studying the evolution of storm systems and serves as a storm spotter for NWS Wilmington, OH. In his spare-spare time, he writes and produces music from his living room.

Abstract:
Most mammals are born with immature, poorly developed sensory systems. As these systems come online, they use immature sensory experience to shape synapses, cell types, and their connectivity across the brain. In the visual system, this experience is thought to be passive, supporting and setting up later modes of image-forming vision after eye-opening.  However, little is known about the form and function of visual experience during the earliest period in a neonate’s life. Driven by this, we set out to generate a comprehensive map of visual system activity and neonatal behaviors in mice.  Using a host of machine learning-based approaches we developed an atlas perinatal visual system activity from the retina to several regions of the brain. Using a combination of chromatic stimuli and genetic loss-of-function mice, we identified the M1 intrinsically photosensitive retinal ganglion cell (ipRGC) in the retina as the driver of early visual system activity, activating distinct brain regions during development. Using this atlas as a guide to assess behaviors, we find that this visual input drives the production of ultrasonic vocalization in neonates and “blinding” mice leads to an augmented vocal code.  Together, these data suggest that early visual system activity has an active role in supporting the development of neonatal behaviors and warrants a deeper exploration of early sensory activity across the developing brain.

A photo of Dr. D'Souza in a white lab coat crouched in some grass holding a doggie toy. Across from Dr. D'Souza is a Golden Retriever with a harness on and it's tongue hanging out of its mouth.Pictured is a color enhanced mouse brain.

 

Date:
Location:
THM 116

"Using Ecological Network Theory to Inform Plant Species Selection for Conservation and Restoration Practice: a Case Study with Bee-plant Networks"

Peters SelfieDr. Valerie Peters | Peters Lab

Bio:
Dr. Valerie Peters is an associate professor of Community Ecology in the Department of Biological Sciences at Eastern Kentucky University. Her research focuses in the areas of agroecology, conservation biology, insect community ecology, plant-animal interactions and tropical ecology. Dr. Peters current research is supported by an NSF CAREER grant, with five years of funding to conduct research and educational outreach in Costa Rica that focuses on the conservation of >700 species of native tropical bees and the pollination services they provide. Dr. Peters is originally from Pennsylvania and graduated with her B.S. in Biology from Pennsylvania State University. After graduating, she wanted to gain a better understanding of real-world issues in conservation biology before deciding on a specific topic for her PhD research. To reach this objective, she decided to combine her passion for ecological science with poverty eradication, and worked for five years, first as an Americorps Volunteer and later, as a Peace Corps Volunteer. As a Peace Corps Volunteer, her work pioneered the successful protection of over 20,000 hectares of land leading to a reserve now known as the La Botija National Park which represents one of the few protected areas in southern Honduras. After Peace Corps, she received her PhD in Ecology from the Odum School of Ecology at the University of Georgia. Her PhD work focused on understanding how to best manage diverse coffee agroforests for bird and bee communities, and was conducted in Costa Rica with funding from the Earthwatch Institute.

Abstract:
Land-maxing in cultivated ecosystems will require a science-based selection of tree species in order for the land to be effective in achieving its multiple goals; e.g. biodiversity conservation and ecosystem integrity, alleviating malnutrition and global inequalities of wealth, and the mitigation of climate change. Plant species are not all equivalent in the number of species they support, and land managers have hundreds or thousands of plant species to choose among. The analysis of ecological networks can be used to quantitatively identify species that are posited to have the strongest impacts on network structure and stability based on their topological role. Once identified, experimental tests of these species’ efficacy in conservation and restoration applications are needed to confirm theory. 

Tropical bees and the pollination services they provide are a critical conservation target yet remain relatively understudied. We empirically quantified tropical bee/butterfly-plant and bee-plant interaction networks and identified the topological roles of all plant species. These networks were constructed across home gardens in a lowland tropical rain forest life zone (years 2017-2019), in 10 agroforestry systems in a tropical premontane life zone (year 2022), and across 30 home gardens spanning an elevational gradient from 200-1500m elevation encompassing three life zones: tropical dry forest, tropical premontane and tropical montane (year 2023). Plant species identified as holding core topological roles from these previous studies are now planted in an experimental restoration study, with data expected to be collected over the next two years.

Watch the seminar here!

Date:
Location:
THM 116

"Using Ecological Network Theory to Inform Plant Species Selection for Conservation and Restoration Practice: a Case Study with Bee-plant Networks"

Peters SelfieDr. Valerie Peters | Peters Lab

Bio:
Dr. Valerie Peters is an associate professor of Community Ecology in the Department of Biological Sciences at Eastern Kentucky University. Her research focuses in the areas of agroecology, conservation biology, insect community ecology, plant-animal interactions and tropical ecology. Dr. Peters current research is supported by an NSF CAREER grant, with five years of funding to conduct research and educational outreach in Costa Rica that focuses on the conservation of >700 species of native tropical bees and the pollination services they provide. Dr. Peters is originally from Pennsylvania and graduated with her B.S. in Biology from Pennsylvania State University. After graduating, she wanted to gain a better understanding of real-world issues in conservation biology before deciding on a specific topic for her PhD research. To reach this objective, she decided to combine her passion for ecological science with poverty eradication, and worked for five years, first as an Americorps Volunteer and later, as a Peace Corps Volunteer. As a Peace Corps Volunteer, her work pioneered the successful protection of over 20,000 hectares of land leading to a reserve now known as the La Botija National Park which represents one of the few protected areas in southern Honduras. After Peace Corps, she received her PhD in Ecology from the Odum School of Ecology at the University of Georgia. Her PhD work focused on understanding how to best manage diverse coffee agroforests for bird and bee communities, and was conducted in Costa Rica with funding from the Earthwatch Institute.

Abstract:
Land-maxing in cultivated ecosystems will require a science-based selection of tree species in order for the land to be effective in achieving its multiple goals; e.g. biodiversity conservation and ecosystem integrity, alleviating malnutrition and global inequalities of wealth, and the mitigation of climate change. Plant species are not all equivalent in the number of species they support, and land managers have hundreds or thousands of plant species to choose among. The analysis of ecological networks can be used to quantitatively identify species that are posited to have the strongest impacts on network structure and stability based on their topological role. Once identified, experimental tests of these species’ efficacy in conservation and restoration applications are needed to confirm theory. 

Tropical bees and the pollination services they provide are a critical conservation target yet remain relatively understudied. We empirically quantified tropical bee/butterfly-plant and bee-plant interaction networks and identified the topological roles of all plant species. These networks were constructed across home gardens in a lowland tropical rain forest life zone (years 2017-2019), in 10 agroforestry systems in a tropical premontane life zone (year 2022), and across 30 home gardens spanning an elevational gradient from 200-1500m elevation encompassing three life zones: tropical dry forest, tropical premontane and tropical montane (year 2023). Plant species identified as holding core topological roles from these previous studies are now planted in an experimental restoration study, with data expected to be collected over the next two years.

Watch the seminar here!

Date:
Location:
THM 116

"Using Ecological Network Theory to Inform Plant Species Selection for Conservation and Restoration Practice: a Case Study with Bee-plant Networks"

Peters SelfieDr. Valerie Peters | Peters Lab

Bio:
Dr. Valerie Peters is an associate professor of Community Ecology in the Department of Biological Sciences at Eastern Kentucky University. Her research focuses in the areas of agroecology, conservation biology, insect community ecology, plant-animal interactions and tropical ecology. Dr. Peters current research is supported by an NSF CAREER grant, with five years of funding to conduct research and educational outreach in Costa Rica that focuses on the conservation of >700 species of native tropical bees and the pollination services they provide. Dr. Peters is originally from Pennsylvania and graduated with her B.S. in Biology from Pennsylvania State University. After graduating, she wanted to gain a better understanding of real-world issues in conservation biology before deciding on a specific topic for her PhD research. To reach this objective, she decided to combine her passion for ecological science with poverty eradication, and worked for five years, first as an Americorps Volunteer and later, as a Peace Corps Volunteer. As a Peace Corps Volunteer, her work pioneered the successful protection of over 20,000 hectares of land leading to a reserve now known as the La Botija National Park which represents one of the few protected areas in southern Honduras. After Peace Corps, she received her PhD in Ecology from the Odum School of Ecology at the University of Georgia. Her PhD work focused on understanding how to best manage diverse coffee agroforests for bird and bee communities, and was conducted in Costa Rica with funding from the Earthwatch Institute.

Abstract:
Land-maxing in cultivated ecosystems will require a science-based selection of tree species in order for the land to be effective in achieving its multiple goals; e.g. biodiversity conservation and ecosystem integrity, alleviating malnutrition and global inequalities of wealth, and the mitigation of climate change. Plant species are not all equivalent in the number of species they support, and land managers have hundreds or thousands of plant species to choose among. The analysis of ecological networks can be used to quantitatively identify species that are posited to have the strongest impacts on network structure and stability based on their topological role. Once identified, experimental tests of these species’ efficacy in conservation and restoration applications are needed to confirm theory. 

Tropical bees and the pollination services they provide are a critical conservation target yet remain relatively understudied. We empirically quantified tropical bee/butterfly-plant and bee-plant interaction networks and identified the topological roles of all plant species. These networks were constructed across home gardens in a lowland tropical rain forest life zone (years 2017-2019), in 10 agroforestry systems in a tropical premontane life zone (year 2022), and across 30 home gardens spanning an elevational gradient from 200-1500m elevation encompassing three life zones: tropical dry forest, tropical premontane and tropical montane (year 2023). Plant species identified as holding core topological roles from these previous studies are now planted in an experimental restoration study, with data expected to be collected over the next two years.

Watch the seminar here!

Date:
Location:
THM 116

"Using Ecological Network Theory to Inform Plant Species Selection for Conservation and Restoration Practice: a Case Study with Bee-plant Networks"

Peters SelfieDr. Valerie Peters | Peters Lab

Bio:
Dr. Valerie Peters is an associate professor of Community Ecology in the Department of Biological Sciences at Eastern Kentucky University. Her research focuses in the areas of agroecology, conservation biology, insect community ecology, plant-animal interactions and tropical ecology. Dr. Peters current research is supported by an NSF CAREER grant, with five years of funding to conduct research and educational outreach in Costa Rica that focuses on the conservation of >700 species of native tropical bees and the pollination services they provide. Dr. Peters is originally from Pennsylvania and graduated with her B.S. in Biology from Pennsylvania State University. After graduating, she wanted to gain a better understanding of real-world issues in conservation biology before deciding on a specific topic for her PhD research. To reach this objective, she decided to combine her passion for ecological science with poverty eradication, and worked for five years, first as an Americorps Volunteer and later, as a Peace Corps Volunteer. As a Peace Corps Volunteer, her work pioneered the successful protection of over 20,000 hectares of land leading to a reserve now known as the La Botija National Park which represents one of the few protected areas in southern Honduras. After Peace Corps, she received her PhD in Ecology from the Odum School of Ecology at the University of Georgia. Her PhD work focused on understanding how to best manage diverse coffee agroforests for bird and bee communities, and was conducted in Costa Rica with funding from the Earthwatch Institute.

Abstract:
Land-maxing in cultivated ecosystems will require a science-based selection of tree species in order for the land to be effective in achieving its multiple goals; e.g. biodiversity conservation and ecosystem integrity, alleviating malnutrition and global inequalities of wealth, and the mitigation of climate change. Plant species are not all equivalent in the number of species they support, and land managers have hundreds or thousands of plant species to choose among. The analysis of ecological networks can be used to quantitatively identify species that are posited to have the strongest impacts on network structure and stability based on their topological role. Once identified, experimental tests of these species’ efficacy in conservation and restoration applications are needed to confirm theory. 

Tropical bees and the pollination services they provide are a critical conservation target yet remain relatively understudied. We empirically quantified tropical bee/butterfly-plant and bee-plant interaction networks and identified the topological roles of all plant species. These networks were constructed across home gardens in a lowland tropical rain forest life zone (years 2017-2019), in 10 agroforestry systems in a tropical premontane life zone (year 2022), and across 30 home gardens spanning an elevational gradient from 200-1500m elevation encompassing three life zones: tropical dry forest, tropical premontane and tropical montane (year 2023). Plant species identified as holding core topological roles from these previous studies are now planted in an experimental restoration study, with data expected to be collected over the next two years.

Watch the seminar here!

Date:
Location:
THM 116

"Using Ecological Network Theory to Inform Plant Species Selection for Conservation and Restoration Practice: a Case Study with Bee-plant Networks"

Peters SelfieDr. Valerie Peters | Peters Lab

Bio:
Dr. Valerie Peters is an associate professor of Community Ecology in the Department of Biological Sciences at Eastern Kentucky University. Her research focuses in the areas of agroecology, conservation biology, insect community ecology, plant-animal interactions and tropical ecology. Dr. Peters current research is supported by an NSF CAREER grant, with five years of funding to conduct research and educational outreach in Costa Rica that focuses on the conservation of >700 species of native tropical bees and the pollination services they provide. Dr. Peters is originally from Pennsylvania and graduated with her B.S. in Biology from Pennsylvania State University. After graduating, she wanted to gain a better understanding of real-world issues in conservation biology before deciding on a specific topic for her PhD research. To reach this objective, she decided to combine her passion for ecological science with poverty eradication, and worked for five years, first as an Americorps Volunteer and later, as a Peace Corps Volunteer. As a Peace Corps Volunteer, her work pioneered the successful protection of over 20,000 hectares of land leading to a reserve now known as the La Botija National Park which represents one of the few protected areas in southern Honduras. After Peace Corps, she received her PhD in Ecology from the Odum School of Ecology at the University of Georgia. Her PhD work focused on understanding how to best manage diverse coffee agroforests for bird and bee communities, and was conducted in Costa Rica with funding from the Earthwatch Institute.

Abstract:
Land-maxing in cultivated ecosystems will require a science-based selection of tree species in order for the land to be effective in achieving its multiple goals; e.g. biodiversity conservation and ecosystem integrity, alleviating malnutrition and global inequalities of wealth, and the mitigation of climate change. Plant species are not all equivalent in the number of species they support, and land managers have hundreds or thousands of plant species to choose among. The analysis of ecological networks can be used to quantitatively identify species that are posited to have the strongest impacts on network structure and stability based on their topological role. Once identified, experimental tests of these species’ efficacy in conservation and restoration applications are needed to confirm theory. 

Tropical bees and the pollination services they provide are a critical conservation target yet remain relatively understudied. We empirically quantified tropical bee/butterfly-plant and bee-plant interaction networks and identified the topological roles of all plant species. These networks were constructed across home gardens in a lowland tropical rain forest life zone (years 2017-2019), in 10 agroforestry systems in a tropical premontane life zone (year 2022), and across 30 home gardens spanning an elevational gradient from 200-1500m elevation encompassing three life zones: tropical dry forest, tropical premontane and tropical montane (year 2023). Plant species identified as holding core topological roles from these previous studies are now planted in an experimental restoration study, with data expected to be collected over the next two years.

Watch the seminar here!

Date:
Location:
THM 116

"Using Ecological Network Theory to Inform Plant Species Selection for Conservation and Restoration Practice: a Case Study with Bee-plant Networks"

Peters SelfieDr. Valerie Peters | Peters Lab

Bio:
Dr. Valerie Peters is an associate professor of Community Ecology in the Department of Biological Sciences at Eastern Kentucky University. Her research focuses in the areas of agroecology, conservation biology, insect community ecology, plant-animal interactions and tropical ecology. Dr. Peters current research is supported by an NSF CAREER grant, with five years of funding to conduct research and educational outreach in Costa Rica that focuses on the conservation of >700 species of native tropical bees and the pollination services they provide. Dr. Peters is originally from Pennsylvania and graduated with her B.S. in Biology from Pennsylvania State University. After graduating, she wanted to gain a better understanding of real-world issues in conservation biology before deciding on a specific topic for her PhD research. To reach this objective, she decided to combine her passion for ecological science with poverty eradication, and worked for five years, first as an Americorps Volunteer and later, as a Peace Corps Volunteer. As a Peace Corps Volunteer, her work pioneered the successful protection of over 20,000 hectares of land leading to a reserve now known as the La Botija National Park which represents one of the few protected areas in southern Honduras. After Peace Corps, she received her PhD in Ecology from the Odum School of Ecology at the University of Georgia. Her PhD work focused on understanding how to best manage diverse coffee agroforests for bird and bee communities, and was conducted in Costa Rica with funding from the Earthwatch Institute.

Abstract:
Land-maxing in cultivated ecosystems will require a science-based selection of tree species in order for the land to be effective in achieving its multiple goals; e.g. biodiversity conservation and ecosystem integrity, alleviating malnutrition and global inequalities of wealth, and the mitigation of climate change. Plant species are not all equivalent in the number of species they support, and land managers have hundreds or thousands of plant species to choose among. The analysis of ecological networks can be used to quantitatively identify species that are posited to have the strongest impacts on network structure and stability based on their topological role. Once identified, experimental tests of these species’ efficacy in conservation and restoration applications are needed to confirm theory. 

Tropical bees and the pollination services they provide are a critical conservation target yet remain relatively understudied. We empirically quantified tropical bee/butterfly-plant and bee-plant interaction networks and identified the topological roles of all plant species. These networks were constructed across home gardens in a lowland tropical rain forest life zone (years 2017-2019), in 10 agroforestry systems in a tropical premontane life zone (year 2022), and across 30 home gardens spanning an elevational gradient from 200-1500m elevation encompassing three life zones: tropical dry forest, tropical premontane and tropical montane (year 2023). Plant species identified as holding core topological roles from these previous studies are now planted in an experimental restoration study, with data expected to be collected over the next two years.

Watch the seminar here!

Date:
Location:
THM 116

"Organismal Agency"

WalshDr. Denis Walsh

Bio:
Denis Walsh is Professor in the Department of Philosophy and the Institute for the History and Philosophy of Science at the University of Toronto. He completed a PhD in Biology at McGill University, Montreal and a PhD in Philosophy at Kings College, University of London. He is author of Organisms, Agency and Evolution (2105 Cambridge University Press)

Abstract:
Philosophers of biology and evolutionary biologists have recently begun to propound the view that organisms are agents and that understanding their agency should have a substantial impact on our understanding of the dynamics of evolution. This suggestion has been met with a fair degree of scepticism and consternation. The objective of this talk is to offer an overview of organismal agency. Questions to be discussed include: In what sense are organisms agents? In what ways might organismal agency alter our conception of evolution? How does organismal agency relate to proposals for an extended evolutionary synthesis? Is the agential perspective consistent with gene-centred modern synthesis thinking about evolution?

Watch the seminar here!

 

Date:
Location:
THM 116

"Organismal Agency"

WalshDr. Denis Walsh

Bio:
Denis Walsh is Professor in the Department of Philosophy and the Institute for the History and Philosophy of Science at the University of Toronto. He completed a PhD in Biology at McGill University, Montreal and a PhD in Philosophy at Kings College, University of London. He is author of Organisms, Agency and Evolution (2105 Cambridge University Press)

Abstract:
Philosophers of biology and evolutionary biologists have recently begun to propound the view that organisms are agents and that understanding their agency should have a substantial impact on our understanding of the dynamics of evolution. This suggestion has been met with a fair degree of scepticism and consternation. The objective of this talk is to offer an overview of organismal agency. Questions to be discussed include: In what sense are organisms agents? In what ways might organismal agency alter our conception of evolution? How does organismal agency relate to proposals for an extended evolutionary synthesis? Is the agential perspective consistent with gene-centred modern synthesis thinking about evolution?

Watch the seminar here!

 

Date:
Location:
THM 116