Alzheimer disease (AD) is a neurodegenerative disorder characterized histopathologically by the presence of senile plaques (SPs), neurofibrillary tangles (NFTs), and decreased synaptic density [1,2]. The main component of SPs is amyloid-β peptide (Aβ), which has been associated with increased oxidative stress, leading to oxidative modification of proteins and consequently to neurotoxicity and neurodegeneration. Low-density lipoprotein receptor-related protein 1 (LRP1) is the primary moiety responsible for the efflux of Aβ from the brain to the blood across the blood–brain barrier. Impaired brain-to-blood transport of Aβ by LRP1 has been hypothesized to contribute to increased levels of Aβ in AD brain. The cause of LRP1 dysfunction is unknown, but we have hypothesized that Aβ oxidizes LRP1, thus damaging its own transporter. Consistent with this notion, we report in this study a significant increase in the levels of lipid peroxidation product 4-hydroxy-2-nonenal bound to transmembrane LRP1 in AD hippocampus. In contrast, the levels of LRP1-resident 3-nitrotyrosine did not show a significant increase in AD hippocampus compared to age-matched controls. Based on this study, we propose that Aβ impairs its own efflux from the brain by oxidation of its transporter LRP1, leading to increased Aβ deposition in brain, thereby contributing to subsequent cognitive impairment in AD.

© 2010 Elsevier Inc. All rights reserved.
signaling [22]. In this study, we tested the hypothesis that LR1P1 is oxidized in the hippocampus of subjects with AD. Such oxidative modifications to LR1P1 would alter its structure, providing a mechanism by which LR1P1’s ability to efflux Aβ would be affected. Aβ is hypothesized to lead to lipid peroxidation in AD brain [8,25–29]. We reported elevated HNE bound to the glutamate transporter GLT-1 (EAAT2) [30], which has decreased function in AD [31], and this elevation of HNE could be replicated by addition of Aβ(1–42) to synaptosomes [30]. Based on an analogy to the case of GLT-1, we hypothesize that HNE bound to the β-subunit of LR1P1 would lead to increased Aβ accumulation in the brain with subsequent oxidative stress, plaque formation, and AD pathogenesis. Accordingly, in this study, we measured the levels of HNE bound to and 3NT on the β-subunit of LR1P1 in AD hippocampus to assess the level of oxidative posttranslational modifications to LR1P1. The β-subunit, as described above, contains the membrane-spanning portion of LR1P1 and the subunit is rich overall in histidine, lysine, and cysteine residues (UniProt protein database ID Q07954, short name LRP-85), probably providing potential targets in the β-subunit of LR1P1 for HNE addition [28].

Materials and methods

Materials

All chemicals were purchased from Sigma–Aldrich (St. Louis, MO, USA) with the exception of nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). The anti-LRP1 antibody has been described in previously published research [23].

Subjects

Frozen hippocampi from AD patients and age-matched controls were obtained from the University of Kentucky Rapid Autopsy Program of the Alzheimer’s Disease Clinical Center (UK ADC). All AD subjects displayed progressive intellectual decline. Control subjects underwent annual mental status testing as a part of the UK ADC normal volunteer longitudinal aging study and did not have a history of dementia or other neurological disorders. Brains from subjects with neurodegeneration were collected after a short postmortem interval (PMI) that averaged less than 5 h. AD brains had Braak stages ranging from 1 to 6, with the most severe stage being 6 [32]). All control subjects had test scores for dementia in the normal range and all the control subjects were obtained from the University of Kentucky Rapid Autopsy Program of the Alzheimer’s Disease Clinical Center (UK ADC). AD (n = 9) and age-matched control (n = 9) hippocampi were minced and homogenized separately in Media-1 containing 10 mM Hepes buffer (pH 7.4), 137 mM NaCl, 4.6 mM KCl, 1.1 mM KH2PO4, 0.1 mM EDTA, and 0.6 mM MgSO4 as well as the protease inhibitors leupeptin (0.5 mg/ml), pepstatin (0.7 μg/ml), type II soybean trypsin inhibitor (0.5 μg/ml), and phenylmethylsulfonyl fluoride (40 μg/ml). These homogenates were centrifuged at 14,000 g for 10 min to remove debris. Protein concentration in the supernatant was determined by the BCA assay using the Pierce kit (Pierce Chemical, Rockford, IL, USA).

Immunoprecipitation of LR1P1

Protein A/G–agarose beads (50 μl per sample, i.e., 900 μl for 18 samples; Amersham Pharmacia Biotech, Piscataway, NJ, USA) were washed with immunoprecipitation (IP) buffer three times for 5 min using a vortexer with shaker attachment. IP buffer contained phosphate-buffered saline (PBS) with 0.05% NP-40 and the protease inhibitors leupeptin (4 μg/ml final concentration), pepstatin (4 μg/ml final concentration), and aprotime (5 μg/ml final concentration), adjusted to pH 8. Hippocampal homogenates from AD and control subjects (300 μg) were first precleared with washed protein A/G–agarose beads (50 μl) for 1 h at 4°C. Samples were then incubated overnight with anti-LRP1 antibody (5 μg) followed by 1 h incubation with protein A/G–agarose. The antigen–antibody–protein A/G complex was centrifuged at 1000 g for 5 min and the resultant pellet was washed five times with IP buffer (500 μl). The final pellet was suspended in deionized water. Proteins were resolved on SDS–PAGE, followed by immunoblotting on a nitrocellulose membrane (Bio-Rad).

Immunodetection

For immunodetection of HNE bound to and 3NT resident on LR1P1 the nitrocellulose membranes were blocked with 3% bovine serum albumin (BSA) in PBS containing 0.01% (w/v) sodium azide and 0.2% (v/v) Tween 20 for 90 min at room temperature. The membranes were incubated with anti-LRP1 polyclonal antibody diluted 1:5000 in 3% BSA, anti-actin monoclonal antibody (Sigma–Aldrich) diluted 1:5000 in 3% BSA, anti-HNE polyclonal antibody (Alpha Diagnostic, San Antonio, TX, USA) diluted 1:5000 in 3% BSA, or anti-3NT polyclonal antibody (Sigma–Aldrich), diluted 1:2000 in 3% BSA for 2 h at room temperature with rocking. After completion of the primary antibody incubation, the membranes were washed three times in Wash Blot for 5 min each and incubated with anti-rabbit IgG alkaline phosphatase (ALP)-linked secondary antibody (Sigma), diluted 1:3000 in Wash Blot, for 1 h at room temperature. The membranes were washed in Wash Blot three times for 5 min each and developed using Sigma Fast Tablets (BCIP/NBT substrate; Sigma) The Western blot measuring the levels of the β-subunit of LR1P1 (Fig. 1) was incubated with anti-LRP1 antibody (1:5000) as described above, and after completion of the primary antibody incubation, the membranes were washed three times in Wash Blot for 5 min each and incubated with anti-rabbit IgG horseradish peroxidase (HRP)-linked secondary antibody (GE Healthcare, Piscataway, NJ, USA), diluted 1:3000 in Wash Blot, for 1 h at room temperature and visualized using ECL Plus Western blotting detection reagents (GE Healthcare). The blot was subsequently stripped using Reblot Plus Strong antibody stripping solution (Millipore, Billerica, MA, USA) as described by the manufacturer and redeveloped using anti-actin antibody (Sigma) as described above using anti-rabbit–ALP secondary antibody. The Western blot measuring the HNE-bound β-subunit of LR1P1 normalized on the same blot with unmodified LR1P1 (Fig. 3) was visualized using anti-rabbit–HRP antibody and stripped with prepared Strong stripping solution (62.5 mM Tris–HCl (pH 6.8), SDS (2% wt/vol), and β-mercaptoethanol (10 mM)). The stripped Western blot was washed three times in Wash Blot and blocked with BSA. The Western blot was reprobed with anti-LRP1 antibody and anti-rabbit HRP-linked secondary antibody as described above.

Image analysis

After immunodetection of oxidative modification of LR1P1 the membranes were completely dried at room temperature and were then scanned using a Microtek Scanmaker 4900 scanner and a

Table 1

Demographic characteristics of controls and AD patients

<table>
<thead>
<tr>
<th>Sample</th>
<th>Age (years)</th>
<th>Gender (M/F)</th>
<th>Postmortem interval (h)</th>
<th>Braak staging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>82±6.2</td>
<td>6/3</td>
<td>2.6±0.8</td>
<td>1–2</td>
</tr>
<tr>
<td>AD</td>
<td>85±5.3</td>
<td>5/4</td>
<td>4.8±1.6</td>
<td>4–6</td>
</tr>
</tbody>
</table>
Storm860 phosphoimager (GE Healthcare). Images were saved as tiff files in grayscale mode and the intensity of the LRP1 protein modification was quantified using ImageQuant (GE Healthcare) analysis software.

Statistical analysis

Raw values were exported to Microsoft Excel and normalized to percentage control values. The resulting data were analyzed by Student’s t tests. A value of $p<0.05$ was considered statistically significant.

Results

In this study we measured the levels of LRP1 and the levels HNE-bound LRP1 as well as 3NT modification of LRP1 in AD and age-matched control hippocampus using immunoprecipitation techniques. Fig. 1 is a Western blot showing that the levels of LRP1 (β-subunit in AD hippocampus are not significantly different compared to age-

![Fig. 1](image1.png)

Fig. 1. Levels of LRP1 were determined using Western blotting, and no significant difference in the protein levels of LRP1 was found between AD hippocampus and age-matched controls. Actin was used as a loading control as pictured. Data are shown as percentage control (mean ± SEM). The images shown have odd numbers below the age-matched control hippocampal samples and even numbers below AD hippocampal samples.

![Fig. 2](image2.png)

Fig. 2. Levels of HNE-bound LRP1 were determined by immunoprecipitation of LRP1 followed by immunoochemical detection with anti-HNE antibody. The level of HNE-bound LRP1 was significantly increased by 60% in AD hippocampus compared to age-matched controls. Data are shown as percentage control (mean ± SEM); $* p=0.01$. The images shown have odd numbers below age-matched control hippocampal samples and even numbers below AD hippocampal samples.
matched controls. Fig. 2 shows a 60% increase in the levels of HNE-bound LRP1 \(\beta \)-subunit in AD hippocampus compared to age-matched controls. No significant increase in 3NT-modified LRP1 \(\beta \)-subunit was observed in AD hippocampus compared to age-matched controls (Fig. 3). The raw values for the intensity of the LRP1 \(\beta \)-subunit bands obtained in the immunoprecipitation studies presented in Figs. 2 and 3 were normalized against the LRP1 bands obtained from the Western blot presented in Fig. 1 (e.g., the raw value for the HNE-bound LRP1 \(\beta \)-subunit band in lane 1 of Fig. 2 was divided by the raw value obtained from the LRP1 \(\beta \)-subunit band, corresponding to the same AD subject, from lane 1 in the Western blot of Fig. 1, probing for overall levels of the \(\beta \)-subunit, and multiplied by 100 to obtain percentage control value).

To confirm our results of the increased levels of HNE-bound LRP1 in AD hippocampus, immunoprecipitated LRP1 was probed on a Western blot with anti-HNE antibody, stripped, and reprobed with anti-LRP1 antibody. The HNE-bound LRP1 bands were normalized to the unmodified LRP1 bands obtained from the same blot. The results show a 67% increase in AD hippocampus compared to age-matched controls (Fig. 4).

Discussion

LRP1 is a multifunctional protein that scavenges, serves as a signaling receptor, and transports multiple binding partners, including apoE, \(\alpha \)2-
macroglobulin, tissue plasminogen activator, plasminogen activator inhibitor-1, factor VIII, lactoferrin, and Aβ [33–35]. Recent studies show that LR1P interacts with APP, RAGE, and PS1, proteins involved in Aβ production [36,37], and that LR1P activity is diminished at the BBB of AD patients [38]. In addition, LR1P has been shown to mediate both apoE and cholesterol levels in the CNS through APP and to regulate the influence of apoE on microglial inflammation in cell culture systems [23,39,40].

However, it is unclear what causes LR1P dysfunction in AD. This study shows that HNE-bound LR1P β-subunit, containing the transmembrane portion of the protein, is significantly increased in AD hippocampus compared to age-matched controls, consistent with the hypothesis that oxidative modification to LR1P contributes to increased Aβ load in AD brain. LR1P in other tissues is readily oxidized, with resulting loss of function [41,42]. As noted, previous studies show that oxidative modifications to biomolecules occur in AD brain [8,30,43–45]. Oligomeric Aβ has been shown to induce oxidative stress under in vitro and in vivo conditions, and the Aβ-induced oxidative changes are believed to contribute to neuronal loss and AD pathogenesis [16,19,46]. The numbers of senile plaques are elevated in the hippocampus compared to the cerebellum in AD brain [14]. In addition, histopathological studies show extensive cell loss in the hippocampus from AD subjects [37,47–49]. Previous studies show impaired Aβ efflux at the BBB in transgenic animal models of AD, and as noted there is evidence that LR1P activity is reduced at the BBB of AD subjects [38,50]. As noted above, studies from peripheral tissues suggest that the oxidation of LR1P may reduce the activity of this receptor to its other ligands such as α2-macroglobulin [41,42].

Epidemiologic studies propose that oxidation of LR1P in the blood is one of the risk factors for AD [51,52]. Further, previous studies reported altered levels of LR1P in AD brain, possibly leading to increased senile plaque formation, cell death, cognitive impairment, and AD pathogenesis [53,54]. Because LR1P serves as the main efflux pump of Aβ from the brain to the blood, oxidation of LR1P by its substrate Aβ may be a mechanism of increased accumulation of Aβ in AD brain.

Protein oxidation often leads to loss of function and cell death via necrotic or apoptotic processes [13]. In this study we tested the hypothesis that oxidatively modified LR1P is increased in AD hippocampus compared to age-matched controls. LR1P β-subunit was immunoprecipitated and probed for protein-bound HNE and 3NT as indices of lipid peroxidation and protein nitration, respectively, in age-matched control and AD hippocampus. We show, for the first time, that the LR1-1 β-subunit is oxidatively modified by HNE in AD hippocampus, a region of the brain with high levels of Aβ and senile plaques. The observed increase in HNE bound to LR1P can be explained based on the notion that Aβ, as small oligomers, can insert in the lipid bilayer of brain membranes including brain endothelial cells [27,30,55,56]. The membrane is composed of high levels of polyunsaturated fatty acids, and the incorporation of Aβ into the lipid bilayer alters membrane fluidity and initiates a lipid peroxidation chain reaction, subsequent production of HNE [8,44,57], and, as shown in this study, a resulting Michael addition-mediated binding of HNE to LR1P. As presented in the introduction, we previously demonstrated Aβ-induced lipid peroxidation to another membrane-bound protein, the excitatory amino acid transporter 2 (EAAT2) in rat synaptosomes, and we found elevated HNE bound to EAAT2 in AD brain [30]. This transporter has decreased activity in AD [31] and we speculate that LR1P activity will decrease with HNE modification. However, further studies are needed to confirm this hypothesis.

Aβ is a neurotoxic peptide that contributes to oxidative stress in AD brain [15–19], and this neurotoxic peptide is removed from the brain by LR1P [33–35]. Our results from this study support the notion that Aβ-induced lipid peroxidation inhibits its own efflux mechanism from the brain by increasing the levels of HNE-bound LR1P. The results of this study are consistent with the concept that oxidative modification of LR1P and not the reduction in levels of LR1P may be responsible for the increased level of Aβ accumulation in the hippocampus of subjects with AD. Further research is in progress in our laboratories to understand the role of LR1P oxidation in AD pathogenesis and progression.

Acknowledgments

The authors thank the University of Kentucky ADRC Clinical Neuropathology Core faculty for providing the brain tissue used for this study. This research was supported by a NIH grant to D.A.B. (AG-029839), NIH (AG-029839) and VA Merit Review grants to W.A.B., and a NIH grant to G.B. (R01-027924).

References
