Defaults and head marking: maximal inheritance, minimal overriding

> Andrew Hippisley University of Kentucky

outline

- 1. Network Morphology fundamentals
- 2. Derivation and default inheritance
- 3. Derivational relatedness
- 4. Canonical derivation and inheritance
 - Russian expressive morphology, non-canonical
- 5. Headed derivatives
- 6. Defaults and the canonical

1. Network Morphology fundamentals

Network Morphology fundamentals

Knowledge representation

- word structure facts distributed over a network of nodes
- nodes linked by inheritance
- inheritance by default
- inheritance can be from more than one node

Network Morphology fundamentals

Theoretical

- lexeme as minimal sign
 - lexical entries are lexemes 'filled in'
- inferential-realizational
 - features expressed as an attribute path, word form as value
- centrality of the paradigm
 - lexical entry's theorems
- autonomous morphology
 - orthogonal hierarchies, multiple inheritance
- regularity as degree
 - default inheritance

 $[[x]_X y]_Y$

Construction Morphology (Booij 2005:124)

 $[[x]_{\mathrm{V}} er]_{\mathrm{N}}$

'one who V's'

 $[[bak]_V er]_N$

 $[bake]_V$

Also: Riehemann (1998) Kriger&Nerbonne (1993) Deo (2007)

1	build versions of a lexeme	build new lexeme
2	determined by syntax	not determined by syntax
3	obligatory	not obligatory
4	fully productive	not fully productive
5	transparent	not always transparent
6	all base features inherited	some base features overridden
7	after derivational exponent	before inflectional exponent

1	build versions of a lexeme	build new lexeme
2	determined by syntax	not determined by syntax
3	obligatory	not obligatory
4	fully productive	not fully productive
5	transparent	not always transparent
6	all base features inherited	some base features overridden
7	after derivational exponent	before inflectional exponent

1	build versions of a lexeme	build new lexeme
2	determined by syntax	not determined by syntax
3	obligatory	not obligatory
4	fully productive	not fully productive
5	transparent	not always transparent
6	all base features inherited	some base features overridden
7	after derivational exponent	before inflectional exponent

6 all base features inherited
 maximal inheritance
 defaults

Some base features inherited *non-maximal* inheritance

overrides

some base features inherited *non-maximal* inheritance overrides: morphosyntactic features

>

Č'ITAT'

phon level
root = /č 'it-/
stem 2 = /č 'ita-/
sem level
'read'
syn level

syn cat = V args = 2 (NP_NP) Č´ITATEL´ phon level -/č´ita-tel´/ sem level `person who reads`

 $syn \ level$ $syn \ cat = N$

>

Č'ITAT'

phon level
root = /č 'it-/
stem 2 = /č 'ita-/
sem level
'read'

syn level syn cat = V args = 2 (NP_NP) Č´ITATEL´ phon level /č´ita-tel´/ sem level `person who reads`

 $syn \ level$ $syn \ cat = N$

>

Č'ITAT'

phon level
root = /č 'it-/
stem 2 = /č 'ita-/
sem level
'read'

syn level syn cat = V args = 2 (NP_NP) Č'ITATEL' phon level /č'ita-tel'/ sem level 'person who reads'

 $syn \ level$ $syn \ cat = N$

>

Č 'ITAT '

Č'ITATEL'

mor level Class V_1 *mor level* Class N_1

>

Č'ITAT'

Č'ITATEL'

mor level Class V_1 mor level Class N_1

Č ' ITAT '		Č ' ITATEL '
mor level	>	mor level
Class V_1		Class N_1

Principle of the morpholexically coherent lexicon (Spencer 2005)i.e. correspondence among syntactic, semantic and morphological properties

WFR

Base

/<u>x</u>/

Х

V

tel 'WFR phon level /x + tel '/

Derivative

sem level 'person who Xes'

synsyn cat = N

Lexeme Formation Template (Construction Morphology) tel 'LFT Derivative Base phon level /x + tel'//x/ sem level 'person who Xes'

syn cat = N

syn

X

 \mathbf{V}

relatedness and inheritance

relatedness and inheritance

lexemic level	inheritance source	
	base	LFT
syntactic	X	\checkmark
semantic	!√!	\checkmark
phonological	! √!	\checkmark
morphological	X	\checkmark

čitat → čitatel ´

formal analysis

Č'itat': <> == VERB <gloss> == read <conjugation_class> == V_I:<mor> <root all> == č'it <stem 2> == <root all> a <valence> == 2.

Č'itatel': <> == LFT_TEL' <base> == "Č'itat':<>".

formal analysis

Č'itat': <> == VERB <gloss> == read <conjugation_class> == V_I:<mor> <root all> == č'it <stem 2> == <root all> a <valence> == 2.

Č'itatel': <> == LFT_TEL' <base> == "Č'itat':<>".

<base gloss> == "č´itat´:<base gloss>"
<base stem 2> == "č´itat´:<base stem 2>"

conversion

lexemic level	inheritance source		<i>dobro</i> 'good deed' <i>dobryj</i> 'kind'
	base	LFT	
syntactic	X	✓	
semantic	! √!	✓	Dobr(o) LFT
phonological	!√!	X	
morphological	X	~	Dobr(ij)

transposition

LEXEME

lexemic level	inheritance source		VERB
	base	LFT	
syntactic	X	~	Pobel´it LFT
semantic	~	X	Pobelka
phonological		~	<i>pobelit ´</i> 'whitewash'
morphological	X		<i>pobelka</i> 'whitewashing'

4. Canonical derivation & inheritance

canonical derivation & inheritance

 derivative is maximally distinct from base while maintaining some connection with base

canonical derivation & inheritance

- derivative is maximally distinct from base while maintaining some connection with base
- some formal connection with base keeps the relation morphological

canonical derivation & inheritance

- derivative is maximally distinct from base while maintaining some connection with base
- some formal connection with base keeps the relation morphological
- in an inheritance framework, *canonical* derivation is maximal *inheritance* from the LFT node

non-canonical derivation

 towards maximal inheritance from Base, minimal inheritance from LFT
non-canonical derivation

 towards maximal inheritance from Base, minimal inheritance from LFT
 inheritance of Base's morphosyntactic features

non-canonical derivation

- towards maximal inheritance from Base, minimal inheritance from LFT
- inheritance of Base's morphosyntactic features
- category preserving derivation

non-canonical derivation

lexemic level	inheritance source		
	base	LFT	
syntactic	\checkmark	X	
semantic	! √!	\checkmark	
phonological	! √!	\checkmark	
morphological	X	~	

lexemic level	inheritance source		Dom
	base	LFT	LFT
syntactic	\checkmark	X	Dom´išče
semantic	! √!	~	Donnisoe
phonological	! √!	~	
morphological	X		

gromadn-yj ryž-ij dom-išč-e huge-SG.M rust-SG.M house(M)-AUG-SG(IV) 'The huge red-rust house' (Chekov, *Svetlaja ličnost* ')

- Class I \rightarrow masculine, e.g. *dom*
- Class II \rightarrow feminine
- Class III \rightarrow feminine
- Class IV → neuter

s godoval-ym brat-išk-oj
with year-SG.M.INS brother(M)-PEJ-SG.INS(II)
'with your one-year-old brother'

- Class I \rightarrow masculine, e.g. *brat*
- Class II → feminine
- Class III \rightarrow feminine
- Class IV \rightarrow neuter

Russian expressive morphology dom 'house', topor 'axe', kniga 'book', šinel ' 'coat'

Base	DIM	AUG	PEJ	AFFECT
dom	domik	domišče	domiško	-
topor	toporik	toporišče	toporiško	toporčik
kniga	knižka	knižišča	_	knižočka
Šinel '	šinelka	-	šineliška	šineločka

Based on Stankiewicz (1968)

expressive morphology is an example of category preserving derivation (Stump 1991, 1993, 2001: ch 4)

5. Headed derivatives

The product of a category preserving rule of word formation is a *headed* expression (when PFM goes derivational) o endocentric compounds [tooth [brush]_{HEAD}] o output of expressive derivation rule [[dom]_{HEAD} ik] o head&Modifier / subsective semantics

base features persist
 o semantics
 o (important) morphosyntactic features

base features persist

- o semantics
- o (important) morphosyntactic features
- a property of a category preserving word formation rule is *transparency* (Stump 2001: 99)
 - o rule allows base features to persist (PFM)
 - Network Morphology: base features are noncanonically *inherited* by the derivative lexical entry

base features persist

- o semantics
- o (important) morphosyntactic features
- a property of a category preserving word formation rule is *transparency* (Stump 2001: 99)
 - o rule allows base features to persist (PFM)
 - Network Morphology: base features are noncanonically *inherited* by the derivative lexical entry
 sineliška (fem), *bratiška* (masc)
 - o Breton *bag* 'boat' → *bagig* 'little boat'; *bihan* 'small' → *bihanig* 'a little too small' (Stump 2001: 100)

 category changing rules yield unheaded expressions

- o [čitatel ']
- o (important) features from the base are *overridden* (inheritance from the LFT)
 o that's canonical derivation

headed compounds
 head is always inflected (Stump 2010)
 outlive/outlived [out [live-d]]
 ounderstand/understood [under [stood_{PST}]]
 nothers-in-law [[mother-s] in law]
 grandstand/grandstanded [grandstand]_V-ed
 V → N → compound_N → V conversion

headed derivatives
inflecting the head is an option *bratiška* [[brat] išk]-a edge marking
Shughni, East Iranian 'little baby goats' gujbucenik [[gujbuc-en]_{PL} ik] head marking

headed derivatives *gujbucenik* [[gujbuc-en]_{PL} ik] head marking

 \check{cost} wam $gu\check{j}$ buc- en - ik=endis $may\check{gunj}$ -idiappear.PSTher.OBLbabygoat-PL-DIM = 3.PLveryhungry-INTENS \hat{T} he dear little kids appeared very hungry to her \tilde{O} \check{O} \check{O} \check{O} \check{O}

 for headed expressions, as well as a rule of exponence you need a rule of *composition* (Stump 2010): does the head inflect or the whole expression?

Head Application Principle (Stump 2005: 67)

Where stem *d* arises from stem *b* through the application of a word-word rule *r*, then for each cell $\langle b, \sigma \rangle$ in *b*'s paradigm, if $\langle b, \sigma \rangle$ has realization *x*, then the corresponding cell $\langle d, \sigma \rangle$ in *d*'s paradigm has realization *r*(*x*).

Head Application Principle (Stump 2005: 67)

Where stem *d* arises from stem *b* through the application of a word-word rule *r*, then for each cell $\langle b, \sigma \rangle$ in *b*'s paradigm, if $\langle b, \sigma \rangle$ has realization *x*, then the corresponding cell $\langle d, \sigma \rangle$ in *d*'s paradigm has realization *r*(*x*).

- stem b cell < gujbuc, {NUM:PL}> is realized as gujbucen
- stem d is gujbucik through rule r
- stem d cell <gujbucik, {NUM:PL}> realized as gujbucenik, i.e. < gujbuc, {NUM:PL}> ik

lexemic level	inheritance source		Dom
	base	WFR	LFT
syntactic	\checkmark	X	Dom´išče
semantic	!√!	✓	
phonological	!√!	\checkmark	
morphological	X		

maximal Base inheritance

lexemic level	inheritance source		Guj̆buc
	base	WFR	LFT
syntactic	\checkmark	X	Guj̆bucik
semantic	!√!	\checkmark	
phonological	!√!	\checkmark	
morphological	\checkmark	X	

<sem <deriv aff>

<sem <deriv aff>

<mor pl> == ``<base mor pl>'' ``<der aff>''

Theorems of Gujbucik

Gujbucik:<syn cat> = n. Gujbucik:<gloss> = small baby_goat. Gujbucik:<sem feature> = small. Gujbucik:<mor sg> = gujbuc ik. Gujbucik:<mor pl> = gujbuc en ik.

finding head marking

finding head marking

Greg's Sanskrit example *car* 'act', *abhicar* [abhi [car]]
3sg present indicative [abhi [car-ati]]
but why not [abhi [car]]-ati ??
3sg imperfect *a-carat*, *abhy-a-carat*,
[abhi [a-car-at]]

finding head marking

PFM Principles:

- if head is marked in one cell, it's marked in all cells (PFM's Paradigm Uniformity Generalization)
- coderivatives are either all head marking or not,
 i.e. head marking stipulated in the rule (PFM's
 Coderivative Uniformity Generalization)

Nouns

o pod-gruppa 'sub-group', ne-znanie 'ignorance'

Adjectives

o *ne-gramotnyj* 'illiterate', *bez-opasnyj* 'dangerous', *pre-dobryj* 'overly kind'

Verbs

o za-govorit ´ 'begin to speak', pere-delat ´ 'alter', perepisat ´ 'to rewrite', prij-ti 'come'

Verbs

o za-govorit 'begin to speak', pere-delat 'alter', perepisat 'to rewrite', prij-ti 'come'

1st and 2nd sg non-past

Verbs

o za-govorit 'begin to speak', pere-delat 'alter', perepisat 'to rewrite', prij-ti 'come'

V_II	V_I	V_III
govorju	delaju	pišu
govoriš '	delaeš '	pišeš '
zagovorju	peredelaju	perepišu
zagovoriš '	peredelaješ '	perepišeš '

1st and 2nd sg non-past

Verbs

 o prij-ti 'come'
 o idu, idëš '; šla (past feminine singular)
 o pridu, pridëš '; prišla (past feminine singular)

Verbs

o prij-ti 'come'
o idu, idëš ´; šla (past feminine singular)
o pridu, pridëš ´; prišla (past feminine singular)

Derived forms maintain inflectional class of the base, as well as idiosyncracies, e.g. suppletion
 zagovoriš [za [govor-iš]] head marking

 an extension of the Coderivative Uniformity Genralization:

'all prefix-based category preserving derivation in Russian results in a head marked expression'
Formal analysis

an extension of the Coderivative Uniformity Genralization:

'all prefix-based category preserving derivation in Russian results in a head marked expression'

Formal analysis *negramotnyj* 'illiterate'

Formal analysis *negramotnyj* 'illiterate'

<stem> == SUFFIXATION.

3 LFT_NEG_ADJ: <> == LFT_HEAD_MARKING <deriv aff> == ne <sem feature> == ¬ .

inflection vs derivation 1 build versions of a lexeme build new lexeme

Canonical derivation

Lexeme 1 \rightarrow Lexeme 2maximally distinct, while staying morphologically connected

Lexeme 1 → Lexeme 2 maximally distinct, while staying morphologically connected

Canonical derivation

From Base minimal inheritance maximal overriding From LFT maximal inheritance

Least canonical derivationLexeme 1 \rightarrow Lexeme 2minimally distinct, while staying morphologically connected

From Base maximal inheritance minimal overriding From LFT minimal inheritance

Least canonical derivation Lexeme 1 Lexeme 2 minimally distinct, while staying morphologically connected And therefore most like inflection Lexeme 1 syn word_{α} 2 syn word_{α} From Base From LFT maximal inheritance no inheritance no overriding

defaults versus default situations

defaults versus default situations

 defaults characterize system-driven generalization, A dominating B implies B gets everything A has *unless overridden*; hierarchical wrt non-default

defaults versus default situations

- defaults characterize system-driven generalization, A dominating B implies B gets everything A has *unless overridden*; hierarchical wrt non-default
- default situations depend on perspective; characterize canonicity; non-hierchical wrt non-default situation

defaults versus default situations

- defaults characterize system-driven generalization, A dominating B implies B gets everything A has *unless overridden*; hierarchical wrt non-default
- default situations depend on perspective; characterize canonicity; non-hierchical wrt non-default situation
 - Canonical: default situation may mean overriding the default
 - Non-canonical: overriding the default situation may mean inheriting the default