Skip to main content

Introductory Biology I

BIO 148 introduces the student to the biological mechanisms operating at the molecular, cellular, and population level that contribute to the origin, maintenance, and evolution of biodiversity including the origins and history of the evolutionary process. Course material is presented within a phylogenetic context, emphasizing the shared history of all living organisms on earth through common ancestry. The first semester of an integrated one-year sequence (BIO 148 and BIO 152).

Introductory Biology I

BIO 148 introduces the student to the biological mechanisms operating at the molecular, cellular, and population level that contribute to the origin, maintenance, and evolution of biodiversity including the origins and history of the evolutionary process. Course material is presented within a phylogenetic context, emphasizing the shared history of all living organisms on earth through common ancestry. The first semester of an integrated one-year sequence (BIO 148 and BIO 152).

Introductory Biology I

BIO 148 introduces the student to the biological mechanisms operating at the molecular, cellular, and population level that contribute to the origin, maintenance, and evolution of biodiversity including the origins and history of the evolutionary process. Course material is presented within a phylogenetic context, emphasizing the shared history of all living organisms on earth through common ancestry. The first semester of an integrated one-year sequence (BIO 148 and BIO 152).

Prin Of Biology II

The second semester of an integrated one-year sequence (BIO 148 and 152) that is designed to develop understanding and appreciation for the biocomplexity of multicellular eukaryotes, with emphasis on animals and terrestrial plants. Structure and function relationships will be explored at many levels of organization.

Prin Of Biology II

The second semester of an integrated one-year sequence (BIO 148 and 152) that is designed to develop understanding and appreciation for the biocomplexity of multicellular eukaryotes, with emphasis on animals and terrestrial plants. Structure and function relationships will be explored at many levels of organization.

Subscribe to